Motion aftereffect with flickering test patterns reveals higher stages of motion processing

نویسندگان

  • Shin'ya Nishida
  • Takao Sato
چکیده

A series of experiments was conducted to clarify the distinction between motion aftereffects (MAEs) with static and counterphasing test patterns (static and flicker MAEs). It was found that while the motion of higher-order structure, such as areas defined by texture, flicker, or stereoscopic depth, induces little static MAE, such motion reliably generates flicker MAE. It was also found that static and flicker MAEs were induced in opposite directions for stimuli in which first- and second-order structures moved in opposite directions (compound graftings of 2f + 3f or 2f + 3f + 4f, shifting a half cycle of 2f). When the test was static, MAE was induced in the direction opposite to the first-order motion; but when the test was counterphasing, MAE was induced in the direction opposite to the second-order motion. This means that static MAE is predominantly induced by first-order motion, but that flicker MAE is affected strongly by second-order motion, along with first-order motion. The present results suggest that static MAE primarily reflects adaptation of a low-level motion mechanism, where first-order motion is processed, while flicker MAE reveals a high-level motion processing, where both first- and second-order motion signals are available.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptation to motion of a second-order pattern: the motion aftereffect is not a general result

It has become apparent from recent work that the spatial frequency and orientation content of the first-order (luminance) carrier is very important in determining the properties of a second-order (contrast) modulation of that carrier. In light of this we examined whether there was any evidence for a motion aftereffect in one-dimensional second-order patterns containing only two sinusoidal lumin...

متن کامل

Motion aftereffect with flickering test stimuli depends on adapting velocity

Temporal tuning property of motion aftereffect (MAE) with flickering test stimuli (flicker MAE) was examined. Using sinusoidal gratings of several spatial frequencies (SF), MAE strength was measured for various adapting temporal frequencies (TF). Unlike the traditional MAE with static test field, the results indicated that flicker MAE did not depend on TF. Rather, when plotted as a function of ...

متن کامل

Motion adaptation shifts apparent position without the motion aftereffect.

Adaptation to motion can produce effects on both the perceived motion (the motion aftereffect) and the position (McGraw, Whitaker, Skillen, & Chung, 2002; Nishida & Johnston, 1999; Snowden, 1998; Whitaker, McGraw, & Pearson, 1999) of a subsequently viewed test stimulus. The position shift can be interpreted as a consequence of the motion aftereffect. For example, as the motion within a stationa...

متن کامل

Aftereffect of high-speed motion.

A visual illusion known as the motion aftereffect is considered to be the perceptual manifestation of motion sensors that are recovering from adaptation. This aftereffect can be obtained for a specific range of adaptation speeds with its magnitude generally peaking for speeds around 3 deg s-1. The classic motion aftereffect is usually measured with a static test pattern. Here, we measured the m...

متن کامل

Disparity tuning of the stereoscopic (cyclopean) motion aftereffect

Across five experiments this study investigated the disparity tuning of the stereoscopic motion aftereffect (adaptation from moving retinal disparity). Adapting and test stimuli were moving and stationary stereoscopic grating patterns, respectively, created from dynamic random-dot stereograms. Observers adapted to moving stereoscopic grating patterns presented with a given disparity and viewed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vision Research

دوره 35  شماره 

صفحات  -

تاریخ انتشار 1995